Defect detection of laptop appearance based on
improved multi-scale normalizing flows
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Abstract—In the laptop production process, timely detection
of appearance defects is essential to ensure product quality.
At present, there are many shortcomings in the manual visual
inspection-based method on the laptops production line. In
addition, due to the wide variety of laptop appearance defects
and extreme differences in defect scales, existing defect detection
algorithms perform poorly in the field of laptop appearance
inspection. In response to the above problems, this paper proposes
a defect detection algorithm based on improved multi-scale nor-
malizing flows. First, the multi-level features extracted from the
backbone network are fused by using the pyramid feature fusion
module to obtain multi-scale features with rich semantic and
spatial information. Then, the effective density estimation of the
multi-scale features is achieved by fusing the normalizing flows
of attention mechanisms. Finally, the defects are detected and
localized based on the output likelihood values. The experimental
results demonstrate the effectiveness of the proposed method in
detecting and locating appearance defects.

Index Terms—Laptop appearance defect detection, Pyramid
feature fusion, Attention mechanism, Normalizing flows.

I. INTRODUCTION

With the continuous development of information technol-
ogy, more and more information technology is integrated into
the industrial manufacturing field, which has prompted the
vigorous development of theories and technologies related to
intelligent manufacturing. Industrial surface defect detection is
one of the key issues in the field of intelligent manufacturing,
specifically in the laptop manufacturing industry, timely detec-
tion of various appearance defects in the production process
is necessary to ensure production safety and product quality.
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The existing detection process is mainly achieved by manual,
which is inefficient and limited by the human eye’s inability
to accurately identify small defects.

During the production of laptops, appearance defects are
generated randomly. There are defects such as fingerprints
and water stains generated by human factors, or scratches
caused by automated equipment. Based on actual production
line surveys, we summarize the main challenges of laptop
appearance defect detection: 1) the probability of defects
generated during normal production is extremely small, which
makes defect samples difficult to collect. 2) some defect
types may have never appeared before, requiring detection
algorithms with better generalization. 3) the scale of different
types or even the same type defects varies greatly, and the
difficulty of detecting small-scale defect types is often greater
than that of large-scale defect types.

To summarize the defect detection methods based on tra-
ditional digital image processing and machine learning [1],
most of the methods are limited by specific scenarios or rely
on expert knowledge, and the speed and accuracy of detection
are not high, and are prone to missed inspection and false
inspection. In recent years, high-precision detection methods
based on deep learning have received more attention, but the
large demand for defective samples in the training process
limits their application in industry.

In response to the above problems, motivated by [1], an
improved defect detection algorithm with multi-scale normal-
izing flows is proposed in this paper. Which can effectively
extract the multi-scale features of the image and estimate its
density for defect detection, the framework of the algorithm is
shown in Figure 1, and the details are explained in Section 3.



Compared with [2], the novelty of this paper lies in the use of
pyramidal feature fusion to extract multi-scale features more
effectively. Also, the shuffle attention mechanism is introduced
in the normalizing flows network [3], which enables the nor-
malizing flows to better fit the data distribution. In addition, the
cross-scale fully convolutional module is further enhanced to
make full use of multi-scale feature information. We evaluate
our method with data collected on a laptop production line
and achieve an AUROC score of 99.2% for defect detection
at the image-level.
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Fig. 1: The general framework of the proposed method. It
mainly consists of two steps: multi-scale feature extraction
and density estimation.

II. RELATED WORK

In simple terms, defect detection at the image level is similar
to image anomaly detection, i.e. the algorithm is expected to
be able to distinguish between normal and abnormal images.
Specifically in the field of industrial surface defect detection,
it is often also necessary to locate the location of the defect. In
the following, a brief review of various surface defect detection
methods similar to our task is presented, which we classify
into generative based methods and feature representation based
methods and other deep learning methods.

A. Generative based methods

The basic idea of defect detection methods based on gen-
erative models is that the models are able to reconstruct
images of normal samples. Typical methods such as AE [4]and
VAE [S]are trained with the aim of reconstructing normal
images, and then the difference between before and after
the reconstructed images is used as the anomaly score in
the inference stage to determine whether the samples are
defective. Based on the idea of GAN [6], zhao et al. [7]
proposed a reconstruction network that aims to fix normal
samples with added artificial defects in the training stage. The
defects are detected in the test stage by comparing the original
image with the repaired image through local binary pattern
algorithm.Akcay et al. [8]combined the ideas of AE and
GAN and proposed a novel adversarial autoencoder within an
encoder-decoder-encoder pipeline. The reconstruction encoder
is first trained to learn the potential representation vectors of
the reconstructed image, and then detects image by comparing
the differences between the embedding vectors of the original
image and the reconstructed image in the testing stage. Due

to the strong generalization ability of neural networks, this
generative model also reconstructs the anomalous samples well
and is prone to miss detection, resulting in low detection
accuracy.

In contrast to AE and GAN, generative models based on
normalizing flows [9] can explicitly estimate the data distri-
bution density.Rudolph et al. [10] proposed a feature density
estimation method capable of embedding normal images into
a standard Gaussian distribution and determining defects by
probability estimation in the inference stage. Based on [10],
a cross-scale fully convolutional normalizing flows density
estimation method was proposed by Rudolph et al [2]. which
is able to utilize multi-scale feature information and retains
the spatial structure for visualization. Although the above
algorithm is effective in image level detection, it ignores the
importance of spatial information in low-level features by
adjusting the input image size to extract multi-scale features,
resulting in failure to locate defect locations well.

B. Feature representation based methods

For the feature representation based methods, the basic
idea is to obtain a feature extraction network by pre-training
to make the distance between the feature vectors of normal
images as small as possible in the training stage. In the
testing stage, defect are determined by calculating the distance
between the feature vectors of the test samples and the normal
samples.Cohen et al. [11] store a pool of features of normal
samples in the training stage. In the test stage, the nearest
K features in the feature pool are found to calculate the
anomaly score to determine the anomaly, and then the defect
is localized by feature pyramids. However, the number of
features to be stored during training is linearly related to the
number of normal samples, which leads to high complexity
during testing. Based on [11], Defard et al. [12] estimated the
distribution of each location in the normal image by multi-
level features. In the test stage, the difference between each
position and the corresponding distribution is calculated as
the anomaly score for that position, and finally the maximum
value is selected as the image anomaly score. Due to the simple
alignment of image positions, this method does not work well
for detecting objects with large changes in position.

C. Other methods

Motivated by the excellent algorithms in the field of object
detection, such as the two-stage algorithm Faster RCNN [13],
and the one-stage algorithm YOLO [14]. They were improved
and introduced to industry for the detection of various types
of surface defects, such as fabrics [15], steel [16], etc. Such
supervised learning algorithms can achieve excellent detection
results under the condition that the number of defect samples is
sufficient. However, in many industrial application scenarios, it
is difficult to collect a sufficient number of defect samples for
algorithm training, and it is also time-consuming and laborious
to manually label the defect samples. Moreover, there may be
unseen defect types in industrial production, and supervised
learning-based algorithms are not well suited to detect defect



types beyond the training set. All these reasons limit the
application of target detection algorithms in industrial defect
detection.
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Fig. 2: The framework of multi-scale feature extraction mod-
ule.

III. METHOD

As shown in Fig. 1, our method is divided into two
steps,multi-scale feature extraction (X — Y) and density
estimation (Y — Z). First, in the training phase, we combine
the pre-trained backbone network ResNet [17] and the pyramid
feature fusion module as a feature extraction network to extract
multi-scale features (y € Y) from normal samples (x €
X).Then they are fed into the multi-scale normalizing flows
incorporates the shuffle attention, which is then subjected
to density estimation. The density estimation can map the
unknown distribution py in the feature space to a multivariate
standard normal distribution py. i.e.

Jmsnt (y(l), e ,y(s)) = [z(l), LW =zez )

Where s indicates the number of feature scales, Z has the
same dimensions as Y. Based on the distribution Z we can
obtain the likelihood pyz(z) of the input data x.

The model can fit the data distribution of normal samples
well after training. In the inference phase, likelihood pz(z)
is obtained by density estimation for the feature Y of the
input image x, and determine whether the input sample is
a defective sample based on the pz(z). Since only normal
samples are utilized in the training phase and various unknown
defects are effectively detected in the testing phase. Therefore,
the proposed method is an unsupervised defect detection
algorithm.

A. Pyramid Feature Fusion

Motivated by [18], this paper proposes a multi-scale feature
extraction module based on pyramid feature fusion as shown in

Fig. 2. The left side of which is the pre-trained ResNet50 back-
bone network (with the final pooling layer and fully connected
layer removed), and the multi-scale features [c1, c2, c3, ¢4] are
obtained using the backbone network. On the right side are two
opposite feature fusion paths. In the top-down path, except for
the top-level feature my4, which is obtained by changing the
number of channels by 1*1 convolution of ¢4 (the number of
output channels is fixed to 256), the rest of the feature maps
m;(i = 1,2,3) are obtained by fusing a shallow feature map
¢; with a deeper feature map m;1. In the bottom-up path, the
feature maps p;(i = 2,3,4) are obtained by fusing a shallow
feature p;,_; and a deeper feature m;, except for the bottom
feature p; which is directly copied from m;. The formula is
described as (2). Finally, the high-level features [mz, mg, m4]
and [ps, ps, p4| are concatenated along the channels to obtain
the multi-scale features [y(l), y?, y(3)}.

m; = Convy 3 (Convy 1 (¢;) ® Upz (Mig1))
2
pi = Conwy 3 (Conva 3 (pi—1) ® my)

where C'onvg ;, denotes a convolution operation with step s
and kernel size of k x k; @ denotes element-wise sum; Upo
denotes 2z bilinear interpolation upsampling operation.

The top-down feature fusion path transfers the rich global
information from deeper features to shallow features, and the
bottom-up feature fusion path transfers the rich local informa-
tion from shallow features to deeper features. With these two
feature fusion paths, the extracted multi-scale features have
both rich spatial and semantic information, which improves
the detection performance of small defects while reducing the
computational complexity.

B. Shuffle Attention

Shuffle attention [3] is a lightweight channel-spatial at-
tention mechanism that can be easily embedded in neural
networks. Compared with similar attention mechanisms [19],
the introduction of feature grouping strategy reduces the
computational complexity. First, shuffle attention groups the
feature vectors along the channel dimension and divides them
into two parts by channel dimension. One part learns channel
attention features and assigns different weights to each chan-
nel. The other part learns spatial attention features to focus
feature information on important regions. Finally, the channel
attention and spatial attention are effectively combined using
a shuffle unit.

C. Multi-scale Normalizing Flows

The multi-scale normalizing flows is a flow model consist-
ing of a sequence of neural networks, where each sub-network
is equivalent to an affine transformation of the input. We ex-
tend the sub-network in [2] with shuffle attention mechanism,
which allows the model to better utilize feature information.
As shown in Fig. 3, first we input the multi-scale feature
y = [yM,...,y®] into the corresponding shuffle attention
separately to fuse spatial attention and channel attention to
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Fig. 3: Architecture of sub-networks in multi-scale normalizing flows. The multi-scale feature after fused shuffle attention
are divided into two parts along the channel dimension, then input to the internal sub-network respectively to calculate the
scale and shift parameters, and finally applied to the corresponding parts. The symbols & and © denote the element-wise

multiplication and addition, respectively.

improve the feature ground semantic representation. The trans-
formed multi-scale feature yl(fl) is then divided into two parts
yl(l?l and yl(r% by channel dimension, and these two parts of
the feature vector are successively calculated by two internal
sub-networks f1 and f> to obtain the scale parameters [s1, s2]
and shift parameters [tq,t3], which are subsequently applied

to their respective corresponding parts as follows:

yout,2 = yin,Q © eVISl(yinJ) + Wltl (yin,l)
3)

yout,l = yin,l © ens? (yom’z) + 72t2 (yout,Z)
with y((fgt(z € {1,...,s}) denotes the output of the current
sub-network, and ® denotes element-wise product. [y1, 2] are
learnable parameters initialized to 0. The details of the struc-
ture of the internal sub-networks f, and f, is shown in Fig. 4,
which we implement it via a fully cross-scale convolutional
network, allowing it to take full advantage of the multi-scale
feature information. The output is uniformly partitioned into
scale and shift parameters by channel dimension.

D. Training Objective

During the training process, original feature space Y are
mapped to pre-defined latent space Z via multi-scale normal-
izing flows fy,sny. The objective of training is to maximize
the likelihood of the feature tensor py (y) by normal image.
By mapping z = fsns(y) and according to the variational
change formula (3) , we describe the training objective as
maximizing:

0
det g9z

9y “4)

py (y) = pz(2)

By pre-defined Z as a standard Gaussian distribution, equa-
tion (3) can be simplified to be equivalent to minimizing the
negative log likelihood — log py (y):

log py (y) = logpz(z) + log ’det g%
(5

L(y)

z||2 ~
—logpy(y) = % —log ‘det gT;

with ‘det g—z denoting the absolute value of the Jacobi
determinant, which in this case refers to the Jacobi determinant
of (3). Since the Jacobi of the element-wise product operator
in (3) is a diagonal matrix, the Jacobi determinant can be
simplified to the sum of all scale parameters [sq, Sa].

E. Detection and Localization

In the inference stage, the determination of defect based on
the likelihood py(z) obtained from the density estimation and
threshold 0. By calculating the mean of the output likelihood
squares on all scales, which is considered as the anomaly score
at the image-level.

Alz) = {(1)

1 indicates that the input is a defective

for pz(z) < 6
else

(6)

where A(x)
sample.

For defect localization, since proposed method is based
on convolutional operations to process the feature maps, the
spatial location information is preserved, which allows the
method to use the output likelihood of each location (3, )
of the image for defect localization. By aggregating the
output |27 ;|5 along the channel dimension to obtain the
anomaly score for each position of the feature map y(*). It
is then upsampled to the resolution of the input image by
bilinear interpolation. The final visualization result of defect
localization is obtained.
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Fig. 4: Architecture of the internal sub-network inside the Fig. 3. The cross-information interaction between different scales is
achieved by upsampling and strided convolution. Aggregation is implemented by element-wise sum. The output is split in the
channel dimension to obtain scale parameters s and shift parameters .

IV. EXPERMENTS

In this section, we compare with other methods and perform
ablation experiments to prove the performance of proposed
method.

A. Dataset

The dataset is composed of images collected from a real lap-
top production environment. It contains four types of surface
defects, i.e., fingerprints, rough scratches, tiny scratches, and
water stains. The dataset contains a total of 962 images with
a resolution of 512x512, which contains 706 normal samples
for training and 256 test samples, and the test samples consist
of 76 normal samples and 180 defective samples.

B. Experimental Detail.

We use the number of feature scales of s=3, and the input
image is 512%512 resolution to obtain multi-scale feature maps
of size 64x64, 32x32, and 16x16 with 512 channels each. Four
serial sub-networks are used in the multi-scale normalizing
flows. The training phase is set with batch size of 16 and
training epoch of 120. Whole experiments are performed under
a single NVIDIA GeForce RTX 3090 24G GPU.

C. Result Analysis.

To verify the performance of the proposed method in the
detection of appearance defects in laptops, the area under the
receiver operating characteristic curve (AUROC) at the image-
level on the test set was calculated as a defect detection per-
formance metric. The receiver operating characteristic curve
(ROC) relates the true positive rate and false positive rate
through the threshold 6 in (6), which is insensitive to the ratio
of abnormalities in the test set.

Experimental results are compared with several other ex-
cellent defect detection algorithms as shown in TABLE I. It
can be seen that the proposed method has the highest image-
level AUROC score of 99.30% among all the detection results.
Compared to [2], our improved model improves by almost
1.3%, which is crucial in industrial applications.

As described in Section III-E, the results of partial defect
localization visualization are obtained based on y(*) as shown
in Fig. 5, which shows that the proposed method is able to

effectively capture various types of appearance defects. Due
to the restored image resolution by the upsampling operation,
it leads to a slightly rough defect edge localization, but our
target is not the exact segmentation of the defect location, and
the visualization result by this is sufficient to help the operator
locate the defect quickly.

TABLE I: Detection Performance of Different Method

Method AUROC(%)
GANomaly [8] 84.72
PaDim [12] 95.86
DifferNet [10] 97.10
CS-Flow [2] 98.03
Ours 99.30

TABLE II: Results of Ablation Experiment

Experimental configuration A B C D

Multi-scale X Vv X v

Attention mechanism X X Vv 4
AUROC(%) 95.56 | 9832 | 96.68 | 99.30

D. Ablation Experiments.

To quantify the impact of the improved strategies in our
work, we conducted ablation experiments by comparing the
detection performance of laptop appearance defects under
different configuration strategies. Four groups of ablation ex-
periments were designed as shown in TABLE II. The detection
metrics increased significantly after the introduction of the
multi-scale feature extraction module alone, which indicates
that the fusion of spatial and semantic information plays a
significant contribution to defect detection. The small increase
in metrics after adding the shuffle attention mechanism alone
indicates that improving the semantic expression of features
also plays a contributing role. After adding both modules
simultaneously, the metrics reach the highest, which demon-
strates the effectiveness of the improvements.
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Fig. 5: Visualization results of laptop appearance defect detection. The top row shows the original image and the bottom row

shows the localization obtained by the detection method.

V. CONCLUSION

In this paper, an improved method for detecting defects
in laptop appearance based on multi-scale normalizing flows
is proposed. By introducing a multi-scale feature extraction
module based on the pyramid feature fusion, the spatial and
semantic information of the extracted features is enhanced, and
the detection of multi-scale defects is improved. By introduc-
ing the shuffle attention mechanism, the density estimation
capability of the normalizing flows for effective features is
improved which further enhances the defect detection per-
formance. The experimental results show that the proposed
method has excellent performance in the laptop appearance
defect detection task, with an AUROC score of 99.30% for
defect detection at the image-level. The visualization detection
results based on feature maps demonstrate that the proposed
method also has great defect localization performance.
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